Regression with one r.h.s. variable

1. (a) Show that solutions to the ordinary least squares (OLS) problem

$$
\underset{b_{0}, b_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

are given by

$$
\hat{\beta}_{1}:=\frac{\operatorname{côv}(X, Y)}{\operatorname{vâr}(X)} \quad \hat{\beta}_{0}:=\bar{Y}-\hat{\beta}_{1} \bar{X}
$$

[Hint: show that the estimators solve appropriate analogues of the normal equations.]
(b) Explain why the residuals $\hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}$ satisfy $\sum_{i=1}^{n} \hat{u}_{i}=0$ and $\sum_{i=1}^{n} X_{i} \hat{u}_{i}=0$.
(c) What is the relationship between $\hat{\beta}_{1}$ and the sample correlation between Y_{i} and X_{i} ?

$$
\hat{\beta}_{1}=\frac{\hat{\operatorname{Cov}}(x, y)}{\operatorname{var}(x)} \quad \hat{\beta}_{0}=\hat{Y}-\hat{\beta}_{1} \bar{x}
$$

We are minimising the sum of squares:

$$
C=\min \sum_{i}\left(Y_{i}-b_{0}-b, X_{i}\right)^{2}
$$

By the rOCs,

$$
\begin{aligned}
& \frac{\partial C}{\partial b_{0}}=\sum\left(Y_{i}-b_{0}-b_{1} X_{i}\right)=0 \\
& \frac{\partial c}{\partial b_{1}}=\sum X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)=0
\end{aligned}
$$

$\operatorname{From}(1)$,

$$
\sum\left(Y_{i}-b_{0}-b_{1} X_{i}\right)=0
$$

$$
\Rightarrow \sum Y_{i}-b_{1} \sum X_{i}=n b_{0}
$$

$$
\Rightarrow 1 / n \sum Y_{i}=b_{ \pm} 1 / n \sum x_{i}=b_{0}
$$

$$
\begin{equation*}
\Rightarrow b_{0}=\bar{Y}-b_{1} \bar{X} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\operatorname{Fom}(2): & \sum\left(X_{i}\right)\left(Y_{i}-b_{0}-b_{1} X_{i}\right)=0 \\
\Rightarrow & \sum X_{i} Y_{i}-b_{0} \sum X_{i}-b_{1} \sum X_{i}^{2}=0 \\
\Rightarrow & \sum X_{i} Y_{i}-\left(\bar{Y}-b_{1} X\right) \sum X_{i}=b_{1} \sum X_{i}^{2}
\end{aligned}
$$

A

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum\left(X_{i}-\bar{X}\right)^{2} \\
& =\sum\left(X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}^{2}\right) \\
& =\sum X_{i}^{2}-2 \sum X_{i} \bar{X}+\sum \bar{X}^{2} \\
& =\sum X_{i}^{2}-2 n \bar{X}^{2}+\sum \bar{X}^{2} \\
& =\sum X_{i}^{2}-2 n \bar{X}^{2}+n \bar{X}^{2} \\
& =\sum X_{i}^{2}-n \bar{X}^{2} \\
\hat{\operatorname{Cov}(A, B)} & =\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \\
& =\sum\left(X_{i} Y_{i}-X_{i} \bar{Y}-\bar{X} Y_{i}+\bar{X} \bar{Y}\right) \\
& =\sum\left(X_{i} Y_{i}\right)-\bar{Y} \sum X_{i}-\bar{X} \sum Y_{i}+\Sigma \bar{X} \bar{Y} \\
& =\sum X_{i} Y_{i}-n \bar{Y} \bar{X}-n \bar{X} \bar{Y}+\sum \bar{X} \bar{Y} . \\
& =\sum X_{i} Y_{i}-n \bar{X} \bar{Y}
\end{aligned}
$$

\Rightarrow The FOGs give the optimal Levels of b_{0}^{*} and b_{1}^{*} that solve the least mean squared problem, which can also Be obtained by som the samplisu of variance/covarrance and sample mean.
b) Explain why the residuals $\hat{u}_{i}=Y_{i}-\hat{\beta} s-\hat{\beta}_{I} X_{i}$ satisfy $\sum^{n} \hat{u}_{i}=0$ and $\sum \hat{u}_{0} X_{i}=0$.
\rightarrow We've shown that $\hat{\beta}_{0}$ and $\hat{\beta}$, are the solutions to the least-squared problem. That is to say,

$$
\begin{aligned}
& \sum Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}=0 \quad \text { from FOC } \# 1 \\
\Rightarrow & \sum \hat{u}_{i}=0, \quad \text { Similarly, } \\
& \sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) X_{i}=0 \quad \text { from FOC } \# 2 . \\
\Rightarrow & \sum \hat{u}_{i} X_{i}=0 .
\end{aligned}
$$

Given that they are the solutions to the ROCs, they satisfy By construction Hose two equalities.
(c) What is the relationship between $\hat{\beta} 1$ and the sample correlation between Xi and

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\operatorname{Cov}(\bar{Y}, \bar{X})}{\operatorname{Var}(\bar{X})} \\
& \text { Sample correlation }=\frac{S_{X Y}}{S_{X} S_{Y}} \cdot \frac{\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\left.\frac{1}{n-1} \sqrt{\sum\left(X_{i}-\bar{X}\right.}\right)^{2} \sqrt{\sum\left(Y_{i}-\bar{Y}\right)^{2}}} \\
&=\frac{\operatorname{Cov}(\bar{X}, \bar{Y})}{\sqrt{\operatorname{Var}(\bar{X}) \operatorname{Var}(\bar{Y})}} \\
& \Rightarrow \quad \hat{\beta}_{1}=\sqrt{\frac{\operatorname{Var}(\bar{Y})}{\operatorname{Var}(\bar{X})}} \cdot \frac{S_{X Y}}{S_{X} \cdot S_{Y}}
\end{aligned}
$$

I thanght it would
2. Consider the (population) regression model but can't get it to work when solving the FOC

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

where $\mathbb{E} u_{i}=0$ and $\mathbb{E} X_{i} u_{i}=0$. Assuming $\beta_{1} \neq 0$, we can rewrite this as

$$
X_{i}=-\frac{\beta_{0}}{\beta_{1}}+\frac{1}{\beta_{1}} Y_{i}-\frac{1}{\beta_{1}} u_{i} .
$$

Does it follow that $1 / \beta_{1}$ gives the coefficient on Y_{i} in a population linear regression of X_{i} on Y_{i} ? Explain.
\rightarrow Y think it must do...
We can similarly do the minimisation of least squared?

$$
\text { Let } x_{i}=\gamma_{0}+\gamma_{1} Y_{i}-\gamma_{1} u_{i}
$$

$$
\dot{C}=\min \sum\left(X_{i}-\gamma_{0}-\gamma_{1} Y_{i}\right)^{2}
$$

Focs are still

$$
\begin{aligned}
& \frac{\partial c}{\partial \gamma_{0}}=2 \sum\left(x_{i}-\gamma_{0}-\gamma_{1} Y_{i}\right)=0 \\
& \frac{\partial c}{\partial \gamma_{1}}=2 \sum\left(x_{i}-\gamma_{0}-\gamma_{1} Y_{i}\right) \gamma_{1}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \sum X_{i}-n \gamma_{0}-\gamma_{i} \sum Y_{i}=0 \\
\Rightarrow & \sum X_{i}-\gamma_{i} \sum Y_{i}=n \gamma_{0} \\
\Rightarrow \gamma_{0}=\bar{X}-\gamma_{7} \bar{Y} & \beta_{0}=\bar{Y}-\beta_{1} \bar{X}
\end{array}
$$

Similar derivation jives

$$
\hat{\gamma}_{1}=\frac{\hat{\operatorname{cov}}(X, Y)}{\hat{\operatorname{var}}(Y)} \quad \hat{\beta}_{1}=\frac{\hat{\operatorname{cov}}(X, Y)}{\hat{\operatorname{var}}(X)}
$$

Unless $\operatorname{Va} \hat{r}(Y)=\hat{\operatorname{Var}}(X)$, they wont be equal.
Whinitunas follows:

Minimising the sum of mean squares olistance over the y-axis.

Minimising the sum of mean squares distance over the x-axis.

Regression with multiple r.h.s. variables
3. Suppose that

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+u_{i}
$$

where $\mathbb{E} u_{i}=0, \mathbb{E} X_{1 i} u_{i}=0$ and $\mathbb{E} X_{2 i} u_{i}=0$ (assumption OR). Show that $\left(\beta_{0}, \beta_{1}, \dot{\beta}_{2}\right)$ solve the population linear regression problem

$$
\min _{b_{0}, b_{1}, b_{2}} \mathbb{E}\left(Y_{i}-\dot{b_{0}}-b_{1} X_{1 i}-b_{2} X_{2 i}\right)^{2}
$$

[Hint: there is no need to derive explicit expressions for the solution to this problem.]

What's the iclea here?
\rightarrow The causal model parameters solve the pop $L R$ problem
\rightarrow we know from. The FOCS of the pop $L R$ problem that

$$
\mathbb{E}\left(Y_{i}-b_{0}-b_{1} X_{1 i}-b_{2} X_{2 i}\right) X_{e}=0
$$

where $X_{0}=I_{0}$
\rightarrow From the causal model and taking expectations on boil sickles we have

$$
\mathbb{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} \mathbb{E} X_{1_{i}}+\beta_{2} \mathbb{E} X_{2 i}+\mathbb{E} u_{i}
$$

$$
\Rightarrow \mathbb{E}\left[Y_{i}-\beta_{0}-\beta_{1} X_{I_{i}}-\beta_{2} X_{2 i}\right]=\#_{u_{i}}
$$

. Similarly,

$$
\begin{aligned}
& \mathbb{E}\left(Y_{i} X_{i}\right)= \beta_{0} X_{L}+\beta_{1} \mathbb{E} X_{I_{i}} X_{L}+\beta_{2} \mathbb{E} X_{2 i} X_{l} \\
&+\mathbb{E u}_{i} X_{l} \text { for } l=\{1,2\} \\
& \geqslant \mathbb{E}\left[Y_{i}-\beta_{0}-\beta_{1} X_{I_{i}}-\beta_{2} X_{2 i}\right] X_{l}=\mathbb{I n}_{i} X_{l}
\end{aligned}
$$

We are given that $\mathbb{E} u_{i}=0, \quad \mathbb{E} u_{i} X_{e}=0$

$$
\begin{aligned}
& \quad \text { for } l=\{I, 2\} \text { and so } \\
& \mathbb{E}\left[Y_{i}-\beta_{0}-\beta_{1} X_{I_{L}}-\beta_{2} X_{2 i}\right] X_{E}=\mathbb{I}_{u_{L}} X_{L} \\
& \text { for } L=0, I, 2
\end{aligned}
$$

4. Consider the model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+u_{i} .
$$

Show that the OLS estimator $\hat{\beta}_{1}$ satisfies

$$
\hat{\beta}_{1}=\frac{\operatorname{côv}\left(Y, \tilde{X}_{1}^{\wedge}\right)}{\operatorname{vâr}\left(\tilde{X}_{1}^{\wedge}\right)}
$$

where $\tilde{X}_{1 i}^{\wedge}$ denotes the residual from an OLS regression of $X_{1 i}$ on $X_{2 i}$.

$$
\begin{aligned}
& X_{1-}=\gamma_{0}+\gamma_{1} X_{2 i}+X_{1 i}^{\pi} \\
& \text { Substitute this into the causal model e } \\
& Y_{i}=\beta_{0}+\beta_{1}\left(\gamma_{0}+\gamma_{1} X_{2 i}+X_{1_{i}}^{\lambda_{i}}\right) \\
& { }^{+} \beta_{2} X_{2 i}+u_{i} \\
& =\overbrace{\beta_{0}+\beta_{1} \gamma_{0}+\overbrace{\left(\beta_{1} \gamma_{1}+\beta_{2}\right)}^{\pi_{0}} X_{2}-\quad \pi_{2}}^{\pi_{2}} \\
& +\beta_{1} X^{\infty} I_{i}+u_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi_{0}+\pi_{z} X_{2 i .}+\beta_{7} X_{i_{r}}^{N}+u_{i} \\
& \operatorname{Cov}\left(Y, \bar{X}_{1}\right)=\operatorname{cov}\left(\bar{D}_{0}+\beta_{1} \tilde{X}_{1}+\pi_{2}=0^{(6 y} X_{20}^{(c o n s t a c t i o n)}+u_{i}, \tilde{X}_{1}\right) \\
& =\beta_{1} \operatorname{Var}\left(\hat{X}_{1}\right)+\operatorname{Cov}\left(u_{i}, \tilde{X}_{1}\right) \\
& =\beta_{1} \operatorname{Var}\left(\hat{X}_{1}\right)+\operatorname{Cov}\left(u_{2}, X_{1}-X_{0}-\gamma_{1} X_{2}\right) \\
& +\operatorname{Cov}\left(n_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, n_{1}\right) \\
& \Rightarrow \beta_{1}=\frac{\operatorname{Cov}\left(Y, \tilde{X}_{1}\right)}{\operatorname{Var}\left(\tilde{X_{1}}\right)} \quad \Rightarrow o p
\end{aligned}
$$

The sample analogue is the same, so

$$
\hat{\beta_{1}}=\frac{\hat{\operatorname{cov}}\left(Y, \tilde{X}_{1}^{\prime}\right)}{\sqrt{\operatorname{ar}}\left(\tilde{X}_{1}\right)}
$$

Conditional expectations
5. By using the decomposition

$$
Y=\mathbb{E}[Y \mid X]+\varepsilon
$$

where $\varepsilon:=Y-\mathbb{E}[Y \mid X]$, prove the law of total variance:

$$
\begin{aligned}
\operatorname{var} Y & =\operatorname{var}(\mathbb{E}[Y \mid X])+\mathbb{E} \varepsilon^{2} \\
& =\operatorname{var}(\mathbb{E}[Y \mid X])+\mathbb{E}[\operatorname{var}(Y \mid X)]
\end{aligned}
$$

where $\operatorname{var}(Y \mid X):=\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X])^{2} \mid X\right]$.

$$
F(\Sigma)=\mathbb{H}(\neq(\alpha \mid x))=\#(0)
$$

$$
\begin{aligned}
& Y=\mathbb{E}[Y \mid X]+\varepsilon \quad \text { where } \mathbb{E}(\Sigma \mid X)=0 \\
& \mathbb{E}(\varepsilon)=0 \\
& \operatorname{var}(Y)= \operatorname{var}(\mathbb{E}[Y \mid X]+\varepsilon) \\
&= \operatorname{Var}(\mathbb{E}[Y \mid X])+2 \operatorname{Cov}(\mathbb{E}[Y \mid X], \varepsilon)+ \\
& \operatorname{Var}(\varepsilon)
\end{aligned}
$$

$$
\text { As } \operatorname{cov}(\mathbb{E}[Y \mid X])=\mathbb{E}(\mathbb{E}[Y \mid X] \circ \varepsilon)-\mathbb{E}(\mathbb{E}[Y \mid X]) \cdot \mathbb{E}(\varepsilon)
$$

$$
\stackrel{\text { LE }}{=} \mathbb{E}[\mathbb{E}(\mathbb{E}[Y \mid X] \cdot \varepsilon \mid X)]
$$

$$
{ }^{\operatorname{cod} \|=y} \mathbb{E}[\mathbb{E}[r \mid x] \cdot \mathbb{E}(\varepsilon \mid x)]
$$

$$
\begin{aligned}
\Rightarrow \operatorname{Var}(Y) & =\operatorname{Var}(\mathbb{E}[Y \mid X])+\operatorname{Var}(\varepsilon) \\
& =\operatorname{Var}(\mathbb{E}[Y \mid X])+\mathbb{E}\left(\varepsilon^{2}\right)-\mathbb{E}(\Sigma)^{2}
\end{aligned}
$$

Shown.

$$
\mathbb{E}\left\{\mathbb{E}[Y \mid X]-\left(b_{0}+b_{1} X\right)\right\}^{2}
$$

with respect to $\left(b_{0}, b_{1}\right)$. [Hint: first read the proof given in Appendix C. 2 of the notes.]
(1) We know that a pop LR of Y on X gives us b_{0}^{*}, b_{1}^{*} such that

$$
\begin{align*}
& b_{0}^{*}=\mathbb{E}[Y]-b_{1}^{*} \mathbb{E}(X) \tag{1a}\\
& b_{1}^{*}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)} . \tag{2a}
\end{align*}
$$

(2) We also know that minimising the least squared problem.

$$
\begin{align*}
\underset{b_{0}, b_{1}}{\operatorname{argmin}} & \mathbb{E}\left\{\left(\mathbb{\pm}[Y \mid X]-b_{0}+b_{1} X\right)^{2}\right\} \text { gives us } \\
b_{0}^{*}, b_{1}^{*} & \text { such that } \\
b_{0}^{*} & =\mathbb{E}(\mid+[r \mid X])-b_{1}^{*} \mathbb{E}(X) \tag{18}\\
b_{1}^{*} & =\frac{\operatorname{Cov}(X, \mathbb{I}[Y \mid x])}{\operatorname{Var}(X)} \tag{2b}
\end{align*}
$$

(3) If we can prove $(1 a)=(1 b)$ AND

$$
(2 a)=(2 b)
$$

we are done.
\Rightarrow The CEF decomposition allows us to write Y as the following:

$$
\begin{aligned}
Y=\mathbb{E}[Y \mid X]+\varepsilon \quad \text { where } \mathbb{E}(\Sigma \mid X)=0 . \\
\text { and by } \operatorname{LE} E \mathbb{E}(\Sigma)=0 。
\end{aligned}
$$

\Rightarrow By substituting $Y=\mathbb{E}[Y \mid X]+\varepsilon$ in to (Ia) and (2a) we obtain the following:

$$
\begin{align*}
& b_{0}^{*}=\mathbb{E}[\mathbb{E}[r \mid X]+\varepsilon]-b_{1}^{*} \mathbb{E}(X) . \tag{ic}\\
& b_{1}^{*}=\frac{\operatorname{Cov}(X, \mathbb{E}[r \mid x]+\varepsilon)}{\operatorname{Var}(X)} \tag{2c}
\end{align*}
$$

First working with ICc) we have

$$
\begin{aligned}
b_{0}^{+} \stackrel{\text { linearity }}{=} & \mathbb{1}[\mathbb{E}[Y \mid X]]+\mathbb{E}(\Sigma)-b_{1}^{*} \mathbb{E}(\Sigma)=0 \\
\mathbb{E}(\Sigma) & =0 \\
& \mathbb{E}[E[Y \mid X]]-b_{1}^{*} \mathbb{E}(X)
\end{aligned}
$$

which equals (Ib), and

$$
\begin{aligned}
& b_{7}^{*}=\frac{\operatorname{Cov}(X, \mid E[Y \mid X)]+\varepsilon)}{\operatorname{Var}(X)} \\
& \left.=\frac{\operatorname{Cov}(X, \Sigma)+\operatorname{Cov}(\mathbb{E}[Y \mid X]]}{\operatorname{Var}(X)}, X\right)
\end{aligned}
$$

which is equivalent to (2b), so we are done.
5. Consider the model

$$
Y_{i}=\beta_{0}+\beta_{1 i} X_{i}+u_{i}
$$

where $\beta_{1 i}$, the causal effect of X_{i} on Y_{i}, is itself a random variable (it varies across individuals).
(a) $[20 \%]$ Suppose that u_{i} and $\beta_{1 i}$ are both mean independent of X_{i}. Show that a population linear regression of Y_{i} on X_{i} (and a constant) would recover $\mathbb{E} \beta_{1 i}$. [Hint: what is $\mathbb{E}\left[Y_{i} \mid X_{i}\right]$?]
(b) $[10 \%]$ Give a brief interpretation of $\mathbb{E} \beta_{1 i}$.

STRATEGY: show the CEF coincides with the pop LR.
(1) Tate-the conditional expectation on both sides.

$$
\begin{aligned}
\mathbb{E}\left[Y_{i} \mid X_{i}\right] & \left.=\beta_{0}+\mathbb{\#} \beta_{1} X_{i} \mid X_{i}^{-}\right]+\mathbb{F}\left(u_{i} \mid X_{i}\right) \\
& =B_{0}+\mathbb{F} \cdot \beta_{1_{i}} \circ X_{i}+u_{i}=0
\end{aligned}
$$

\rightarrow The best predictor of Y_{i} with X_{i} alone is

$$
\beta_{0}+\Phi \beta_{I_{i}} \cdot \cdot X_{i}+u_{i}
$$

(2) The pop LR solves the bust squared problem

$$
\underset{b_{0}, b_{7}}{\operatorname{argmin}} \mathbb{F}\left(Y-b_{0}-b_{1} X\right)^{2}
$$

and is the best linear predictor of Y_{i} with $X_{\text {Lore. }}$

$$
b_{1}^{*}=\frac{\operatorname{Cov}\left(x_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
$$

(3) Becanse-1he CEF is linear, the hest predictor is the best linear predictor and thus the pop LR's solutions coincide with the CEF. Thus

$$
b_{1}^{*}=\mathbb{E} \beta_{1_{i}}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
$$

Suppose now that u_{i} and $\beta_{1 i}$ are not necessarily mean independent of X_{i}, but there is an 'instrument' Z_{i} which is related to X_{i} by the equation

$$
X_{i}=\pi_{0}+\pi_{1 i} Z_{i}+v_{i},
$$

and is such that $u_{i}, v_{i}, \beta_{1 i}$ and $\pi_{1 i}$ are independent (not merely mean independent) of Z_{i}. Let β_{IV} denote the coefficient in a population two-stage least squares regression of Y_{i} on X_{i}, using Z_{i} as an instrument. That is, β_{IV} is obtained by the following procedure:
i. X_{i} is regressed on Z_{i} and a constant (in the population), to obtain fitted values $X_{i}^{*}:=\delta_{0}+\delta_{1} Z_{i}$.
ii. Y_{i} is regressed on X_{i}^{*} and a constant (in the population); β_{IV} is the coefficient on X_{i}^{*} in this regression.

Now answer the following questions.
(c) $[20 \%]$ Show that

$$
\begin{equation*}
\beta_{\mathrm{IV}}=\frac{\operatorname{cov}\left(Y_{i}, Z_{i}\right)}{\operatorname{cov}\left(X_{i}, Z_{i}\right)} \tag{1}
\end{equation*}
$$

(d) [20\%] Using (1), show that

$$
\begin{equation*}
\beta_{\mathrm{IV}}=\mathbb{E}\left\{\beta_{1 i} \frac{\pi_{1 i}}{\mathbb{E} \pi_{1 i}}\right\} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{{\operatorname{Cov}\left(Y_{i}, \delta_{0}\right)+\delta_{1} \operatorname{Cov}\left(Y_{i}, Z_{i}\right)}_{\operatorname{Var}\left(\delta \delta_{0}\right)+\delta_{1}^{2} \operatorname{Var}\left(Z_{i}\right)+2 \operatorname{cov}\left(\delta_{0}, \delta_{1} Z_{i}\right)}=0}{} \\
& =\frac{\delta_{1} \operatorname{Cov}\left(Y_{i}, Z_{i}\right)}{\delta_{1}^{2} \operatorname{Var}\left(Z_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Y_{i}, Z_{i}\right)}{\operatorname{Var}\left(Z_{i}\right)} \cdot \frac{1}{\delta_{1}} \\
& \text { From the OLS ngression of } z_{i} \text { on } \\
& \Rightarrow \frac{\operatorname{Cov}\left(Y_{i}, Z_{i}\right)}{\operatorname{Var}\left(Z_{i}\right)} \cdot \frac{\operatorname{Var}\left(Z_{i}\right)}{\operatorname{Cov}\left(X_{i}, Z_{i}\right)} \rightarrow \delta_{1}=\frac{X_{i}=\pi_{0}+\pi, Z_{i}+e v,}{\operatorname{Cov}\left(x_{i}, Z_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Y_{i}, Z_{i}^{-}\right)}{\operatorname{Cov}\left(X_{i}, Z_{i}\right)}
\end{aligned}
$$

(d) [20\%] Using (1), show that

$$
\begin{gather*}
\beta_{\mathrm{IV}}=\mathbb{E}\left\{\beta_{1 i} \frac{\pi_{1 i}}{\mathbb{E} \pi_{1 i}}\right\} \tag{2}\\
X_{i}=\pi_{0}+\pi_{z_{i}} Z_{i}+\nu_{i} \\
\beta_{I V}=\frac{\operatorname{Cov}\left(Y_{1}, Z_{i}\right)}{\operatorname{Cov}\left(X_{i}, Z_{i}\right)} \\
=\frac{\operatorname{Cov}\left(Y, Z_{i}\right)}{\operatorname{Var}\left(Z_{i}\right)} \cdots \frac{\operatorname{Var}\left(Z_{i}\right)}{\operatorname{Cov}\left(X_{i}, Z_{L}\right)}
\end{gather*}
$$

We have the
canal mode $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$
Subslitaling to get recluced form:

$$
Y_{i}=\beta_{0}+\beta_{1 i} \pi_{0}+\underbrace{\beta_{1 i} \pi_{1 i}} Z_{i}+\beta_{1 i} v_{i}+u_{i}
$$

Taking conditional expectations on $60 / \mathrm{h}$ sides, e

$$
\left.\mathbb{E}\left[Y_{i} \mid Z_{i}\right]=\mathbb{E}\left[\beta_{0}+\beta_{1} \pi_{0}+\beta_{1_{i}} \pi_{i} z_{i} \mid Z_{i}\right]+\mathbb{F} \beta_{1_{i} v_{i}+u_{i}} \mid Z_{i}\right]
$$

Byrrelependence $\left(\beta_{0} \| z_{i}, \beta_{1 i}, v_{j} u, \Perp z_{i}\right)$,

$$
=\mathbb{E}\left[\beta_{0}+\beta_{1 i} \pi_{0}+e\right]+\mathbb{E} \beta_{1 i} \pi_{i} \cdot Z_{i}
$$

which is linear in Y_{i}.
$\Rightarrow A$ pop $L R$ ob Y_{i} on Z_{i} recovers $b_{1}^{*}=\frac{\operatorname{Cov}\left(Z_{i}, Y_{i}\right)}{\operatorname{Var}\left(Z_{i}\right)}$

From port I we know that if the CEF is linear, then the pup $L R$ and the CEF coincide:

Given that it is, $\mathbb{E} \beta_{I_{i}} \pi_{1}=b_{1}{ }^{*}$, thus

$$
\mathbb{E} \beta_{1} \pi_{1}=\frac{\operatorname{Cov}\left(Y_{i}, Z_{i}\right)}{\operatorname{Var}\left(Z_{i}\right)}
$$

A similar argument holds for the regression of X_{i} on Z_{i} 。

The pop LR minimises

$$
\underset{\pi_{0}, \pi_{i}}{\operatorname{argmin}}\left(x_{i}-\pi_{0}-\pi_{1} Z_{i}\right)^{2}
$$

and it can be shown

$$
\pi_{I}=\frac{\operatorname{Cor}\left(x_{i}, z_{i}\right)}{\operatorname{Va}\left(z_{i}^{\prime}\right)}
$$

Taking conditional expectations on both sides,

$$
\begin{aligned}
& \mathbb{H}\left(X_{i} \mid Z_{i}\right)=\mathbb{1}\left(\pi_{0}+\pi_{1 i} z_{i}+v_{i} \mid Z_{i}\right) \\
& \text { As } \pi_{1 i} \perp z_{i}, v_{i} \mathbb{H} Z_{i} \\
&=\pi_{0}+\mathbb{E} \pi_{1 i} \cdot z_{i}+v_{i}
\end{aligned}
$$

which is linear in Z_{i}
\Rightarrow best predictor of X_{i} is linear
\Rightarrow CEF coincides with LR

$$
\Rightarrow \mathbb{F}_{1 i}=\frac{\operatorname{Cov}\left(x_{i}, z_{i}\right)}{\operatorname{Var}\left(z_{i}\right)}
$$

